
FPGA programming

(Ver2014_v01)

INTRODUCTION:

In a lot of digital designs (DAQ, Trigger, …) the FPGAs are used. The aim of this exercise is to show you a way to
logic design in a FPGA. You will learn all the steps from the idea to the test of the design.

In this exercise you will:

-discover how we can do parallel applications
-program a FPGA from the design up to the implementation and the test

The boards used are ALTERA development kit (Figure 1) based on a small FPGA (CYCLONE) with multiple
additional interface components like audio CODEC, switches, button, seven-segments display, LEDs, ….
and a home-made board (named detector in the following pages) connected to the development kit with a flat
cable (figure 2)

The initial design is loaded into the board.

You will follow the example to understand the design flow. Four exercises are proposed to modify the original

design functionality.

Figure 1: development kit Figure 2: detector

QUICK START:

1) Programs used are: QUARTUS (FPGA tool), ModelSim (simulator), LabView

2) Ask the tutor if you have question(s) or problem(s)

EXERCISE (example)

When you switch on the kit, the initial design is loaded into the FPGA.

On the LabView window, you can see the progression of the marker on the detector.

At the same time, you can see on the two 7-segments LED (the right ones on ALTERA kit) the column and the line

number over which the maker is positioned.

DESIGN ENTRY

The design file is named “CII_Starter_Default.bdf” (for all exercises you should work with the same design file).

The design is divided in three parts:

a) A green rectangle which is used to transmit the information to the computer via the RS232 connection to

display the trace on LabView.

b) A blue rectangle in which the design generates the clock and the logic to control the detector (see

Appendix A for detailed functionality).

c) A red rectangle, which contains the logic to detect the trace. You will change the logic in this rectangle in

the following exercises.

The idea of all exercises is to detect a trace. As soon as the trace is detected one 7-segment LED blinks (the third

for the right side).

Click on key0 (Altera kit) to stop the blinking. Now generate another trace.

Spend some time to understand how this design works.

Do you understand it?

COMPILATION

This design is the entry of your logic, it should be compiled now; go to QUARTUS Processing->Start Compilation.

The design is compiled for the chosen component (Cyclone II).

The compiler executes multiple tasks:

✓ logic optimization

✓ generates a binary file used to program the FPGA (memory array),

✓ extracts the timing between each logic elements used for the timing analyses

✓ generate an output VHDL file used for the simulation

SIMULATION

When the compilation is finished, you can check the design with a simulator. To do this you will use ModelSim.

Check in the “Project” TAB if there is a file marked with a blue “?”, if YES, compile it (right-clic on it, Compile->

compile selected)

In the “Transcript” tab, type ‘source sim.tcl’, ENTER. The simulator opens the waveform, loads the signals, and

starts the simulation.

At the end, stimuli and results are displayed in the wave window.

This simulation emulates a trace starting from the top left and finishing at bottom right describing a straight line

on the detector.

(The tutor will give you some explanations on the results and the signals shown in the waveform)

Remember where the signal OK goes to “TRUE”.

 Figure 3: straight line

When you finished with the simulator type ‘quit –sim ‘ ENTER in the “Transcript” tab.

PROGRAM THE KIT

To download the design on the board, (QUARTUS program) go to on Tools->Programmer (Check that the

Hardware is USB-Blaster, if not ask the tutor).

One file is shown in the window: it is your design. Click on Start .The programmer takes few seconds. At the end,

a message appears to inform you that the programming is completed (or not successful: in this case usually the

board is switched OFF, or the cable is not well connected).

TEST

Draw a straight line from top left to bottom right to see if the design works well!

Now, you are ready to do the other exercises by yourself.

Good Luck!

EXERCISE I

The exercise above uses the graphic to describe the design. In this exercise, we want to do the same with a text

design entry (VHDL).

In the QUARTUS design entry (file “CII_Starter_Default.bdf”), delete the line between inst_graph and JKFF

inst_result and connect the output ‘result’ of “track1”box to the JKFF inst_result with a line.

-Compile the design

-Simulate the design

Go to ModelSim:

✓ Compile the file marked with a ? in the “Project” tab (select the file to be compiled – Menu

Compile-> Compile selected)

✓ Type “quit –sim“ in the “Transcript” tab.

✓ Type “source sim.tcl “ in the “Transcript” tab.

 Find out the difference with the previous result (check where the signal OK goes to “TRUE”).

Can you explain the difference? Can you modify the file “track1.vhd” to have the same result as in the

previous exercise?

-Download the design

-Test the design

EXERCISE II
In this exercise we want to detect a curved trace.

Figure 4 Figure 5: example of trace expected.

In the QUARTUS design entry (file “CII_Starter_Default.bdf”), delete the line between output ‘result’ of “track1”

box to the JKFF inst_result, and connect the output of the “trck_fnd01” box to JKFF inst_result.

The “trck_fnd01” box logic detects only a straight trace. Compile the design and do a simulation:

-Compile the design (QUARTUS)

-Simulate the design

 Go to ModelSim, compile the file marked with a ? in the “Project” tab (click on the file to compile –

Menu Compile-> Compile selected)

To simulate:

✓ Type “quit –sim” ENTER in “Transcript” tab to exist any running simulation.

✓ Type “source sim2.tcl” ENTER in “Transcript” tab to start the simulator.

A signal OK becomes true if the logic detects the expected trace (here a straight trace).

In this exercise, you will examine the implementation of the design in the FPGA and see how we can change the

results (max. frequency …)

1. In QUARTUS open TimeQuest (Tools -> TimeQuest timing Analyser)

 -double click on Report Fmax Summary (“Tasks” window)

 You can see the maximum frequency of each clocks implemented in the design

 (Note the max frequency that “scan_clk” can reach)

2. Go back to QUARTUS,

Open the partition window (Assignments -> Design partitions window)

Right-click on the partition named “trck_fnd01:instzigzag” (Locate-> Locate in Chip Planner)

Now, you will specify the place where your logic will be implemented:

There is a blue rectangle in the Chip planner (named “trck_fnd01:instzigzag”).

Place it where you want (not at the place where the logic is actually implemented) to implement the logic at the

next compilation.

Compile the design (Quartus), and execute the TimeQuest (see point 1). Normally the maximum frequency will

change.

This give you an idea of the importance of the place of you logic or how to reserve a place if you work in a team

(each person will have a reserved place to implement his logic).

NB: For your information, for each clock of the design, the frequency to reach has to be specified in a constraint

file.

EXERCISE III

The exercise consists to modify the “trck_fnd01” box logic to detect any curve trace as in figure 4.

The trace should start at any pixel in the first line and goes to next line going to a pixel adjacent to the pixel of the

first line and so forth (figure 5).

To help you, you have to change code in the “mask_build” entity (beginning of the “trck_fnd01.vhd”).

-Compile the design

-Simulate the design

 Go to ModelSim, compile the file marked with a ? in the “Project” tab (click on the file to compile –

Menu Compile-> Compile selected)

To simulate:

✓ type “quit –sim’ ENTER in “Transcript” tab to exist any running simulation.

✓ type ‘source sim2.tcl’ ENTER in “Transcript” tab to simulate in this exercise.

A signal OK becomes true if the logic detects the expected trace.

-Download the design

-Test the design

EXERCISE IV

If you have time, you can modify the previous file to detect only the curve trace on right or left (not in zigzag like

the red trace in figure 4).

APPENDIX A

 The detector is a matrix of 10 lines and 10 columns (100 pixels). Only one line is activated at a time.

When a line is activated the result of each column indicates if the marker is over a pixel. Each line is activated one

after the other (0, 1, 2… 8, 9, 0, 1, …) . Each line is activated during 4 clocks cycles. The detection logic checks the

result (if pixel is masked by the marker) only during the third clock cycle (signal “check” in the design).

